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Neural Networks and the Heuristic Method
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Purposes. Quantitative structureYproperty relationships (QSPR) were developed to predict the pKa

values of a set of neutral and basic drugs via linear and nonlinear methods. The ability of the models to

predict pKa was assessed and compared.

Methods. The descriptors of 74 neutral and basic drugs in this study were calculated by the software

CODESSA, which can calculate constitutional, topological, geometrical, electrostatic, and quantum

chemical descriptors. Linear and nonlinear QSPR models were developed based on the heuristic method

(HM) and radial basis function neural networks (RBFNN), respectively. The heuristic method was also

used for the preselection of appropriate molecular descriptors.

Results. The obtained linear model had a correlation coefficient of r = 0.884, F = 37.72 with a root-mean-

squared (RMS) error of 0.482 for the training set, and r = 0.693, F = 11.99, and RMS = 0.987 for the test

set. The RMS in predicting the overall data set is 0.619. The nonlinear model gave better results; for

the training set, r = 0.886, F = 202.314, and RMS = 0.458, and for the test set r = 0.737, F = 15.41, and

RMS = 0.613. The RMS error in prediction for overall data set is 0.493. Prediction results from nonlinear

model are in good agreement with experimental values.

Conclusions. In present study, we developed a QSPR model to predict the important parameter (pKa) of

neutral and basic drugs. The model is useful in predicting pKa during the discovery of new drugs when

experimental data are unknown.

KEY WORDS: neutral and basic drugs; quantitative structureYproperty relationship; radial basis
function neural networks; the heuristic method.

INTRODUCTION

Before a drug can elicit any effect, it usually has to pass
through at least one biological membrane by passive diffusion
or by carrier-mediated uptake. Many drug molecules contain
ionizable groups and hence penetrate across cell membranes,
through pores and via active transport mechanism in a pKa

dependent fashion. Hence pKa is an important factor in
estimating the pharmacological behavior of drugs. Because it
is not always convenient or practical to perform experimental
measurements for pKa, it is useful to develop easy-to-use and
accurate models to predict pKa values for new compounds
not yet synthesized, particularly for drug discovery.

Modeling chemical and biological effects is an important
objective in the fields of chemistry and pharmacology today.
Chemical and biological effects are closely related to molec-
ular properties, which can be calculated or predicted by types
of methods from structure. In 1981 Perrin et al. (1) published a
book on pKa prediction, which is widely used but are
impractical for large systems, especially for high-throughput

virtual screening applications. Fragment methods have proven
to be very useful and are available as commercial software. (2).
Ab initio quantum mechanics and semiempirical quantum
mechanics calculations have been used extensively (3,4). In
addition, pKa values can also be calculated by formalisms from
statistical thermodynamics, which are based on numerical
solutions of the PoissonYBoltzmann equation (5Y7). A number
of methods have also been developed for prediction of pKa of
amino acid residues in proteins in which the environmental
effects are particularly important and difficult to estimate (8).

The expansion of rational techniques, in particular, the
quantitative structure activity relationships (QSAR) and all
its variants, i.e., quantitative structureYproperty relation-
ships (QSPR), quantitative structureYretention relationship
(QSRR), and finally three-dimensional (3D) or four-dimen-
sional (4D) approaches, have recently become potential
methods. Li et al. have reported the prediction of pKa for
both acids and bases using a novel tree structured fingerprint
describing the ionizing centers (9,10). Multivariate data
analysis methods [principal component analysis (PCA) and
partial least squares (PLS)] are applied to the analysis of
comparative molecular field analysis (CoMFA) data for
several nucleic acids components by Gargallo and coworkers
(11). Polański et al. (12) have predicted this property of
benzoic and alkanoic acids by a coupled neural network and
PLS system based on the comparison of molecular surfaces.
Latter, the same authors conducted a systematic study of the
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Table I. Compounds, Experimental and Calculated pKa

No. Compounds Experimental pKa

Calculated pKa

HM RBFNN

1 ergotamine 6.30 5.790 6.498

2 nefazodone 6.50 6.135 6.504

3 nizatidine 6.59 7.313 6.352

4 trazodone 6.79 6.766 7.350

5 mirtazapine 7.30 8.473 8.245

6 clozapine 7.63 8.245 7.779

7 domperidone 7.90 8.123 8.821

8 tolamolol 7.90 8.553 7.906

9 lidocaine 7.94 8.134 7.971

10 naloxone 7.94 8.408 8.244

11 quinidine 8.05 8.581 8.835

12 diltiazem 8.06 8.593 8.394

13 nicotine 8.10 8.813 9.182

14 perphenazine 8.11 8.780 7.918

15 butorphanol 8.19 8.458 8.482

16 codeine 8.20 8.352 8.760

17 nebivolol 8.22 8.706 8.564

18 galanthamine 8.32 8.862 8.978

19 fentanyl 8.43 8.508 8.996

20 ranitidine 8.47 8.594 8.628

21 oxycodone 8.53 8.415 8.46

22 cocaine 8.70 8.721 8.358

23 meperidine 8.70 8.629 8.426

24 timolol 8.80 8.77 8.402

25 remoxipride 8.90 8.155 8.688

26 verapamil 8.92 8.837 8.989

27 rivastigmine 8.99 8.185 8.468

28 promethazine 9.10 8.894 9.127

29 mexiletine 9.15 9.239 9.994

30 levomepromazine 9.19 9.402 8.934

31 betaxolol 9.21 9.568 9.758

32 trimipramine 9.24 9.529 9.505

33 chlorpromazine 9.25 9.040 9.063

34 chlorpheniramine 9.26 9.527 9.511

35 propafenone 9.27 9.805 9.012

36 flecainide 9.30 8.621 8.744

37 citalopram 9.38 8.638 8.889

38 clomipramine 9.38 9.215 9.385

39 labetalol 9.40 8.968 8.928

40 amitriptyline 9.40 9.888 9.671

41 propranolol 9.45 9.206 9.707

42 sumatriptan 9.50 9.090 9.569

43 venlafaxine 9.50 9.587 9.583

44 azelastine 9.54 8.815 8.791

45 pindolol 9.54 8.899 9.435

46 bisoprolol 9.57 9.673 9.723

47 alprenolol 9.60 9.451 9.743

48 acebutolol 9.67 9.699 9.103

49 nadolol 9.67 9.327 9.536

50 metoprolol 9.70 9.810 9.839

51 tacrine 9.80 9.768 9.839

52 tolterodine 9.80 9.767 9.269

53 atropine 9.84 9.614 9.367

54 terbutaline 10.00 10.250 9.971

55 atomoxetine 10.10 9.671 9.748

56 nortriptyline 10.10 10.025 9.602

57 desipramine 10.23 9.558 9.330

58 maprotiline 10.50 9.862 9.284

59 amantadine 10.68 10.181 9.881

60 cimetidine 6.97 6.626 7.119

61 sufentanil 7.85 8.744 8.788

62 clonidine 8.05 7.521 7.815

63 morphine 8.18 8.905 8.605
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performance of the 3D- and 4D-QSAR schemes in modeling
steric and electronic effects on benzoic acids. They attempted
to predict the pKa values of (o-, m-, and p-) benzoic acids,
which were divided into three subseries to simulate the
different levels of steric and electronic control (13). The
advantage of QSPR method lies in the fact that it can predict
property based on knowledge of the chemical structure alone
as soon as the model has been built. Advances in QSAR or
QSPR studies have widened the scope of rationalizing drug
design and the search for the mechanisms of drug actions.

In the present work, radial basis function neural net-
works (RBFNN) and the heuristic method (HM) were used
for the prediction of pKa values of 74 neutral and basic drugs
using descriptors calculated by the software CODESSA. The
HM was also used for the preselection of appropriate
molecular descriptors. The principal objective was to explore
the possibility of establishing an accurate QSPR model for
neutral and basic drugs and to compare the performances of
RBFNN and HM. The structural factors affecting the
compounds’ pKa values were also investigated.

DATA SET AND MOLECULAR
DESCRIPTOR GENERATION

Data Set Description

The studied compounds were a series of neutral and basic
drugs whose names and pKa values are shown in Table I. The
table lists a diverse set of 74 drugs, which were taken from
Lombardo et al. (14). The data set was randomly divided into
two subsets in HM and RBFNN: a training set of 59
compounds and a test set of 15 compounds. The training set
was used to build the HM and RBFNN model and the test set
was used to evaluate its predictive ability in both methods.

Descriptor Generation

The two-dimensional structures of the molecules were
drawn with the ISIS DRAW program (MDL Information
Systems, Inc., San Leandro, CA, USA) [15]. All molecules
were transferred into Hyperchem (Hypercube, Inc., Gaines-
ville, FL, USA) and preoptimized using MM+ molecular

mechanics force field (16). A more precise optimization is
performed through the semiempirical PM3 method in
MOPAC [17]. The molecular structures were optimized using
the PolakYRibiere algorithm until the root mean square
gradient reached 0.05. The resulting geometry was then
transferred into CODESSA software (18,19) (developed by
the Katritzky group), which can calculate constitutional,
topological, geometrical, electrostatic, and quantum chemical
descriptors, and has been successfully used in various QSPR
and QSAR researches. Constitutional descriptors are related
to the number of atoms and bonds in each molecule. Topo-
logical descriptors include valence and nonvalence molecular
connectivity indices calculated from the hydrogen-suppressed
formula of the molecule, encoding information about the size,
composition, and the degree of branching of a molecule.
Geometrical descriptors are calculated from 3D atomic coor-
dinates of the molecule. These descriptors comprise moments
of inertia, shadow indices, molecular volume, molecular
surface area, and gravitation indices. Electrostatic descrip-
tors reflect characteristics of the charge distribution of the
molecule. Quantum chemical descriptors include information
about binding and formation energies, partial atom charge,
dipole moment, and molecular orbital energy levels. In the
present investigation, about 700 descriptors were provided.

MATERIALS AND METHODS

Heuristic Method

As soon as molecular descriptors are generated,
CODESSA uses the heuristic method to preselect descriptors
and build the linear model (19Y21). Its advantages are is high
speed and the absence of software restrictions on the size of
the data set. The heuristic method can either quickly give a
good estimation about what quality of correlation to expect
from the data, or derive several best regression models.
Besides, it can demonstrate which descriptors have bad or
missing values, which descriptors are insignificant (from the
standpoint of a single-parameter correlation), and which
descriptors are highly intercorrelated. The heuristic method
of the descriptor selection proceeds with a preselection of
descriptors by eliminating (1) descriptors that are not
available for each structure, (2) descriptors having a small

Table I. Continued

No. Compounds Experimental pKa

Calculated pKa

HM RBFNN

64 risperidone 8.30 7.757 7.534

65 haloperidol 8.65 9.310 8.713

66 azithromycin 8.74 6.279 7.799

67 diphenhydramine 9.10 9.534 9.714

68 procainamide 9.24 7.736 8.431

69 promazine 9.28 9.122 9.120

70 imipramine 9.45 9.648 9.509

71 paroxetine 9.51 9.059 9.162

72 atenolol 9.60 8.773 9.507

73 sotalol 9.76 9.035 9.028

74 quinacrine 10.20 8.816 8.847

Nos. 1Y59: training set, 60Y74: test set.
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variation in magnitude for all structures, (3) descriptors that
give an F test’s value below 1.0 in the one-parameter
correlation, and (4) descriptors whose t values are less than
the user-specified value, etc. This procedure orders the
descriptors by the decreasing correlation coefficient when
used in one-parameter correlations. As a next step, the
program calculates the pair correlation matrix of descriptors
and further reduces the descriptor pool by eliminating highly
correlated descriptors. After the preselection of descriptors,
multiple linear regression (MLR) models are developed in a
stepwise procedure. Thus, descriptors and correlations are
ranked according to the values of the F test and the
correlation coefficient. Starting with the top descriptor in
the list, two-parameter correlations are calculated.

In the following steps, new descriptors are added one by
one until the preselected number of descriptors in the model
is achieved. The final result is a list of the ten best models
according to the values of the F >test and correlation coef-
ficient. The goodness of the correlation is tested via coef-
ficient regression (r2), F test (F), and standard deviation (s2).

Theory of Radial Basis Function Neural Networks

The theory of RBFNN has been extensively presented in
some papers (22,23). Here only a brief description of the
RBFNN principle is given. Figure 1 shows the basic network
architecture. It consists of an input layer, a hidden layer, and
an output layer. The input layer does not process the
information; it only distributes the input vectors to the
hidden layer. The hidden layer of RBFNN consists of a
number of RBF units (nh) and bias (bk). Each hidden layer
unit represents a single radial basis function, with associated
center position and width. Each neuron on the hidden layer
employs a radial basis function as a nonlinear transfer
function to operate on the input data. The most widely used
RBF is a Gaussian function characterized by a center (cj) and
a width (rj). The RBF functions by measuring the Euclidean
distance between the input vector (x) and the radial basis

function center (cj), and performs the nonlinear transforma-
tion with RBF in the hidden layer as given below

hj xð Þ¼ exp � x� cj

�
�

�
�

2
.

r2
j

� �

ð1Þ

in which hj is the notation for the output of the jth RBF unit.
For the jth RBF, cj and rj are the center and the width,
respectively. The operation of the output layer is linear,
which is given below

yk xð Þ ¼
Xnk

j¼1

wkjhj xð Þ þ bk ð2Þ

where yk is the kth output unit for the input vector x, wkj is
the weight connection between the kth output unit and the
jth hidden layer unit, and bk is the bias. It can be seen from
Eqs. (1) and (2) that designing an RBFNN involves selecting
centers, number of hidden layer units, widths, and weights.
There are various ways of selecting the centers, such as
random subset selection, K-means clustering, orthogonal
least squares learning algorithm, RBF-PLS, etc. The width
of the radial basis function networks can either be chosen to
bear the same/different value for all/each unit(s). In this

Table II. Descriptors, Coefficients, Standard Error, and t Test

Values for the Linear Model

No. Descriptor Coefficient

Standard

error t Test

0 Intercept 13.186 0.406 32.48

1 Relative number

of N atoms

j15.970 2.101 j7.600

2 Randic index (order 3) j0.302 0.031 j9.751

3 RNCG relative negative

charge (QMNEG/QTMINUS)

[Quantum-Chemical PC]

j12.703 1.942 j6.543

4 RNCS Relative

negative charged SA

(SAMNEG * RNCG)

[Zefirov’s PC]

0.127 0.028 4.499

5 Max net atomic charge 0.758 0.023 3.245

N = 59, r = 0.882, F = 37.72, RMS = 0.482.

Fig. 2. Predicted vs. experimental pKa by heuristic method.Fig. 1. The structure of radial basis function neural networks.
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paper, considerations were limited to Gaussian functions with
a constant width, which was the same for all units. A forward
subset selection routine was used to select the centers from
training set samples. The adjustment of the connection
weight between hidden layer and output layer is performed
using a least-squares solution after the selection of centers
and width of radial basis functions.

The overall performance of RBFN is evaluated in terms
of a root-mean-squared (RMS) error according to the
equation below

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pnks

i¼1

yk � ŷk

� �2

nk

v
u
u
u
t

where yk is the desired output, ŷk is the actual output of the
network, and nk is the number of compounds in analyzed
set. The performance of RBFNN is determined by the
values of the following parameters: the number nh of radial
basis functions, the center cj and the width rj of each radial
basis function, the connection weight wkj between the jth

hidden layer unit and the kth output unit. The centers of
RBFNN are determined via the forward subset selection
method proposed by Orr [24,25]. The optimal width was
determined by experiments with a number of trials by
taking into account the leave-one-out (LOO) cross-valida-
tion error. The one that gives a minimum LOO cross-
validation error is chosen as the optimal value. After the
selection of the centers and number of hidden layer units,
the connection weights can be easily calculated via linear
least-squares technique.

All calculation programs implementing RBFNN were
written in M-file based on a basis MATLAB script for
RBFNNs. The scripts were run on a Pentium IV PC with 256
M RAM.

RESULTS AND DISCUSSION

Results of the Heuristic Method

The heuristic method was used to develop the linear
model for the prediction of pKa using all the descriptors.

Fig. 3. The spread vs. root-mean-squared error of training set based on leave-one-out

cross-validation.

Fig. 4. Predicted vs. experimental pKa by radial basis function neural networks.
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After the heuristic reduction, the pool of descriptors was
reduced from 700 to 198. To determine the optimum number
of descriptors, various subset sizes were investigated. When
adding another descriptor did not improve significantly the
statistics of a model, it was determined that the optimum
subset size had been achieved. In the present study, five
descriptors were eventually selected. A detailed description
of the linear model based on compounds in the training set is
summarized in Table II.

In the selected linear model, there is a constitutional
descriptor: relative number of N atoms (RNN); a topological
descriptor: Randic index (order 3); two electrostatic descrip-
tors: relative negative charge (QMNEG/QTMINUS) (Quan-
tum-Chemical PC) (RNCG) and relative negative charged
SA (SAMNEG * RNCG) [Zefirov’s PC] (RNCS); and one
quantum chemical descriptor: max net atomic charge. With
the test set, the prediction results were obtained, the
statistical parameters were r = 0.693, F = 11.99, and RMS =
0.987.And the heuristic model produced an RMS error of
0.619 for the whole data set. The predicted vs. observed pKa

based on HM is shown in Table IR Figure 2 shows the pre-
dicted vs. observed pKa values for all of the 74 compounds
studied (the training set and the test set).

Results of RBFNNs

After the establishment of a linear model, RBFNNs is
used to develop a nonlinear model based on the same
subset of descriptors. To obtain better results, the param-
eters influencing the performance of RBFNN were opti-
mized. The selection of the optimal width value for
RBFNN was performed by systemically changing its value
in the training step. The value giving the best leave-one-
out cross-validation result was used in the model. For this
data set, the optimal spread was determined as 1.5 (see
Fig. 3.). The corresponding number of centers (hidden
layer nodes) of RBFNN is 16. The predicted results of the
nonlinear models are shown in Table I and Fig. 4. The
obtained model had a correlation coefficient r = 0.886, F =
202.314, and an RMS error of 0.458 for the training set. The
statistical parameters of the test set were 0.737, F = 15.41, and

RMS = 0.613. The root mean square error in prediction for
overall data set is 0.493. Comparative residuals vs. number of
compounds in the test sets for HM and RBFNN models are
shown in Fig. 5. As shown in Fig. 5, RBFNN performed
slightly better than HM.

Discussion of the Input Descriptors

By interpreting the descriptors in the model, it is
possible to gain some insight into factors that are likely to
influence the pKa values of these compounds. The relative
number of N atoms (RNN) is a constitutional descriptor
calculated as the number of N atoms divided by the number
of atoms. RNN affects the density of the electron cloud of the
molecule. The larger the RNN is, the higher the density of
the electron cloud of the molecule becomes as well as the
polar separation of positive and negative electric charge in
molecular. Thus, an increase in this descriptor leads to a
decrease in pKa of the compound.

Randic index (order 3), which encodes the size, shape,
and degree of branching in the compound, also relates to the
dispersion interaction among molecules. The larger the
molecular size is, the stronger the dispersion interaction
becomes. Because of its negative coefficient in the linear
model, increasing this descriptor also decreases the pKa

values, indicating that dispersion interaction favors the
separation of hydrogen ion from nitrogen atom.

Relative negative charge (RNCG) and relative negative
charged SA (RNCS) are electrostatic descriptors. RNCG is
defined as the ratio of the maximum (by absolute value)
atomic partial negative charge and the sum of similar
negative charges in the molecule, whereas RNCS is defined
as the solvent-accessible surface area of the most negative
atom divided by the relative negative charge. They both
represent or directly depend on the quantum-chemically
calculated charge distribution in the molecules. Charge
distribution is an important factor influencing the polariza-
tion of the molecule, which leads to the different dissociation
ability of proton. The negative coefficient of RNCG in the
model implies that increasing the value of this descriptor can
lead to a smaller pKa value. For RNCS, the larger the

Fig. 5. Comparative residuals vs. no. of compounds in the test sets for HM and

RBFNN models.
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solvent-accessible surface area of the most negative atom is,
the lower is the chance for positive ion to replace proton and
the larger pKa value becomes.

This model also contains a quantum chemical descriptor,
max net atomic charge (qmax). qmax, which is obtained from
the Mulliken charge distribution scheme of quantum chem-
ical calculations, represents or directly depends on the
quantum-chemically calculated charge distribution in the
molecules and can also account for the polar interaction of
molecule. It receives a positive coefficient in the linear
model, indicating that max net atomic charge of the molecule
leads to larger pKa values.

Analysis of the results obtained indicated that the models
we proposed correctly represent the structureYproperty
relationships of these compounds, and that molecular descrip-
tors calculated solely from structures can represent the
structural features of the compounds responsible for their
pKa values.

CONCLUSION

Quantitative structureYproperty relationship models that
can predict the pKa values of neutral and basic drugs were
developed in this study. The proposed linear model could
identify and provide some insights into what structural
features are related to the pKa values for this type of
compounds. Nonlinear RBFNN model based on the same
sets of descriptors showed better predictive ability. Using the
model established, we can predict the pKa value of neutral
and basic drugs whether they have been synthesized or not.
Consequently, it is a very helpful tool in designing new drugs,
especially for early drug discovery.
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